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Abstract. We construct hierarchies of non-linear evolution equations on the superloop 
algebras related to the super Lie algebras b(0, 1) and sl(2/1). The hierarchy associated 
with s1(2/ 1) contains a generalisation of the super-non-linear Schrodinger equatiort, with 
a cubic, non-derivative interaction term, in complex anticommuting fields. In all cases we 
give a recursive procedure for constructing involutive integrals of local polynomials. 

1. Introduction 

Supersymmetry has become an important and fruitful concept in theoretical physics 
[l]. Its importance became clear to particle physicists with the fundamental work of 
Wess and Zumino [2]. Since then interest in supersymmetry has grown rapidly, and 
in addition to particle physics and field theory, several applications have been attempted 
in such diverse fields as nuclear physics, solid state physics and statistical mechanics. 
For general review articles on these subjects see, for example, [3]. 

In the late 1970s Kac [4] worked out a complete classification of simple super-lie 
algebras. He proved that they could be described by a Cartan matrix, i.e. by a 
generalisation of Dynkin diagrams, now called Kac-Dynkin diagrams. Since then 
several important contributions have been made, both to the representation theory of 
super-lie algebras and to their further application in theoretical physics. 

One area of particular interest is integrable super-non-linear evolution equations 
(Super-NLEE). In recent years several authors have extended integrable classes of NLEE 

to include anticommuting field variables. Chaichian and Kulish [SI have studied the 
super-Liouville and super-sine-Gordon equations and shown that the formalism of the 
inverse problem can be applied to these equations. They found that. these equations 
correspond to the super-lie algebras osp(2,l)  and s1(2/ 1) respectively. Kupetshmidt 
[ 6 ]  has constructed a super-extension of the Kdv and the MKdv equation, and proved 
them to be completely integrable. 

Most Super-NLEE have been considered individually, rather than as members of a 
hierarchy. Giirses and Oguz [7] gave a generalisation of the classical AKNS problem 
to a hierarchy based on the super-lie algebra b(0, l ) .  It contains a super-extension 
of the NLS equation [8] and the super-Kdv and super-MKdv equations considered by 
Kupershmidt [6]. The complete integrability of the super-NLs equation has been proved 
by Chowdhury and Naskar [9]. Giirses and Oguz did not discuss the Hamiltonian 
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structure of the equations. This was done by Chowdhury and Roy [lo] by using the 
technique of Riccati equations and an extension of the variational approach of Tu [ 111. 

In a previous paper [ 121 a general method was developed to construct a hierarchy 
of Hamiltonian NLEE on an arbitrary loop algebra. In this paper some of the results 
in [ 121 are extended to include super-lie algebras. A system of Super-NLEE is construc- 
ted, and their infinite non-trivial set of conserved quantities is found. Applications to 
the superloop algebras associated with b(0,l)  and s1(2/1) are considered. 

We find that the equations related to b(0 , l )  include a super-version of the NLS 

equation [7,8] together with the super-Kdv and super-MKdv equation [6,7]. The 
equations related to s1(2/1) contain a generalisation of the super-NLs equation with a 
cubic non-derivative interaction in complex anticommuting fields. A term of this kind 
can only be present if the root space of the algebra under consideration contains more 
than one odd root, but each root vector associated with an odd root of a given sign 
gives rise to one anticommuting field. The root space for s1(2/1) contains two odd 
roots and their root vectors give rise to four anticommuting fields. This explains the 
presence of the cubic spinor term in the generalised super-ms equation associated 
with s1(2/1). 

2. Formulation 

Let Z2 = {0,1} be the group of integers under addition modulo 2. The super-Lie algebra 
g = go+g, is a Z,-graded Lie algebra with a super-Lie bracket [ , ] which satisfies [4] 

[X, Y] = XY - ( -l)d(X)d(Y' Y x  (2.1) 

[X, [y,Z]]=[[X, Y],Z]+(-l)d'X'd'Y) [ Y,  [X, 211 
where d(X)  = 0 (1) if X E go ( g , ) ;  d(X)  is called the degree of X. Hereafter we write 
[ , 1- for commutators and [ , ]+ for anticommutators. 

Let h be a Cartan subalgebra of go and h" the dual of h. For (Y E h", (Y # 0 

g, = {X E g: [H, XI = a(H)X, H E h }  (2.3) 

is called the root space and a is a root if g, f 0. Let A be the set of roots. (Y E A is 
said to be even, respectively odd, if g, n go # 0, respectively g, n g, # 0. Even and odd 
roots are denoted by A. and A ,  respectively. On g there is defined a non-degenerate 
bilinear form ( , ) which has the following properties: it is consistent, (X, Y) = 0 for 
X E go and Y E  g,, it is supersymmetric, (X, Y) = (-l)d'X'd(Y' ( Y ,  X), and it is invariant 

Let 6 = X J E ,  g(J), X(J) = XJAJ E g ' l ) ,  X, E g, be a loop algebra over g and g i  = 
ZJzo  g"), g- = X J G - ,  g(J). 6 is equipped with a non-degenerate bilinear form (X, Y )  = 
Res((X, Y)A-'). This form is consistent, supersymmetric and invariant. Any function 
on 6, or a subspace thereof, has a polynomial form f (X)  = XJf(XJ)AJ,f(X) E C and 
is therefore a well defined element in C[A, l/A], the Laurent polynomials in A. One 
can identify (go')*, the dual of go', with go = X J s o  g(') [12,13] and it is equipped with 
the natural super-Poisson bracket: 

(2.4) 

a x ,  YI, 2) = (X, [ Y,  21). 

If; 81, = (X, [PVf(X), PVg(X)I*I) f; g E C ( ( g 3 * )  

where P is the projection ĝ  + g i .  
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Let A = A((g:)*) be a ring of ad-invariant polynomials on (go+)*. The theorem of 
Adler, Kostant and Symes [14], which can be extended to super-lie algebras, tells us 
that every cp E A gives rise to a vector field on (8;)" given by 

A , ( X )  = [ I I V P ( X ) ,  XI (2.5) 

p k ( X )  = -4 R e s ( K k - ' ( X ,  X ) )  k E  Z+ (2.6) 

where II: g-+ g-. The functions on (go+)*: 

are in involution with respect to the super-Poisson bracket (2.4). For every k they give 
rise to a vector field of the form [12] 

A k ( X ) = -  [XjA"',X]. 
j p k + l  

After equating different powers of A we obtain 

min(n-1,  k )  

Xn;rk= 1 [X,, Xk+n-jI 
j = O  

(2.8b) 

where ; tk  is the derivative with respect to the parameter of the vector field A k .  The 
bracket [ , ] is to be considered as a commutator or an anticommutator, depending 
on the degree of the generators in it. Generally, X j  = Xg+ X j  , X y  E go, X j  E g, . Then 
(2.8) becomes 

x:;rk = 0 x:;rk = 0 ( 2 . 9 ~ )  

(2.96) 

( 2 . 9 ~ )  

We consider X j  as a function with values in g. Let B,, Fa with a = 1 , .  . . , m, 
a = 1,. . . , n be some basis in g satisfying 

[ B a ,  Bbl- = CkbBc [Ba, FeI- = CtaFp [Fa,  FpI+= C",Ba* (2.10) 

Except when otherwise mentioned, summation in repeated indices is understood. In 
this basis we set 

X, = q,"Ba + +;Fa (2.11) 

where qp and +: are fields that depend on the infinite set of parameters rl, t 2 ,  f 3 , .  . . . 
The fields 4; anticommute with each other and commute with b,". The b," commute 
among themselves: 

+P+f + +f+; = 0 +p b," - b," +: = 0 bpbf-bfbf=O. (2.12) 

Inserting (2.11) into (2.9) we find the following equations for the fields q ; ( t , ,  t z ,  . . .) 
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and ( c l p ( t l ,  t Z , .  . .): 

(2.13 b )  

(2.13 c )  

with (n-1,  k)=min(n-1,  k ) .  In a suitable basis for g these equations give rise to 
Super-NLEE in a recursive form. 

3. Examples 

3.1. g=b(O, 1 )  

This super-Lie algebra has five generators, three even ( H ,  E, F )  and two odd (Q, R) ,  
satisfying the following (anti)commutation relations: 

[ H ,  E ] -  = 2 E  [ H , F ] - = - 2 F  [ E ,  F ] -  = H 

[ H ,  Q1- = Q [H, R ] - = - R  

[E,  RI- = Q [F ,  91- = R [O, Ol+ = -2E 

[R,  RI+ = 2F [Q,  RI+ = H.  

Expand Xj in this basis: 

X j  = hjH + ejE +J;F + qiQ + rjR (3.2) 

where the functions hJ, e,,J; commute and the functions qJ and rJ anticommute. From 
(2.9) we find the following equations: 

h o , t A  = = f o , f k  = 40,t, = ro,,, = 0 (3.3a) 
( k,n - 1 1 

hM,!k = 1 (eJ.hf+n-] -Aek+n-J + qqktn-J + qJrktn-J) (3.3b) 
J =o 

(3.3c) 

(3.3d) 

( k , n  - 1  1 

j = O  

( k , n  - 1  1 

j = O  

= ( h j q k + n - j - q , h k + n - , + e j r k + n - - j -  rjek+n-j) (3.3e) 

rn;rA = ( r j h k + n - j - h j r k + n - j + J ; q k + n - j - q r f k + n - j ) .  (3.3.f) 

We put eo =fo = 0, qo = ro = 0, which is compatible with (3.3a) but we leave ho as an 
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undetermined constant. With e = e, , f = f l ,  q = q ,  , r = r l ,  t l  = x we find that the func- 
tions ek,fk,  q k ,  rk, hk satisfy the following recursive relations: 

ek+ 1 = ( 1 / 2 h0) [ ek,x + 2( ehk + q q k  1 (3.4a) 

f k + l =  (1/2ho)[-f , ,x+2(J%+ WJl (3.4b) 

q k + l  = ( l / h O ) ( q k , x + q h k - e r k + r e k )  (3.4c) 

From (3.3) we find for an arbitrary k and n = 1 

e;tk =2hOek+l Ark = -2hofk+l 

q;tx = h O q k + l  ritk = -hark+, . 

(3 .4d)  

(3.4e) 

( 3 5 2 )  

(3.5b) 

As the right-hand side of these equations is a polynomial expression in the variables 
e,J; q, r and their x derivatives, they represent a hierarchy of Super-NmE where for 
every fixed k s 2  we consider tk as the time variable. We write down the first two 
non-trivial equations in the hierarchy. 

(i) k = 2: 

eh = ( l /ho)($exx - e 2 f +  2req + 2qqx) ( 3 . 6 ~ )  

ft,= ( 1 / h 0 ) ( - t f , , + f 2 e - 2 f r q + 2 r r , )  (3.6b) 

( 3 . 6 ~ )  

(3 .6d)  

(ii) k = 3 :  

er3= (1 /4h~)(ex , , -6eeJ-+12rxeq+12req ,+12qq, , )  (3.7a) 

qt3 = (1/h3(qxxx -3/2qxef-3/4qeJ--3/4qeL +3/2rxex +3/4re,,) 

ft,= ( 1 / 4 h 3 ( L x x  -6f fxe  - W r q ,  + 12frxq - 12rrxx) (3.7b) 

(3.7c) 

rr3 = ( l /h;)(rxxx - 3 / 2 r x e f - 3 / 4 r e J - - 3 / 4 r e f x  +3/2fxqx+3/4qLx).  (3 .7d)  

The functions hk turn out to be closely related to the conserved quantities and to 
the Hamiltonians, as will be discussed in 0 5 .  For later reference we list their values, 
corresponding to k = 0, 1 ,2 ,3 ,4 :  

( 3 . 8 ~ )  

(3.8b) 

( 3 . 8 ~ )  

(3 .8d)  
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3.2. g = sl(2/1) 

We start with some general remarks on s l (m/n )  which is defined as 

i sl (m/n)  = { X = (g  :); Str X = Tr A -Tr D = 0 (3.9) 

where A is a ( m  x m )  matrix, B a (m x n )  matrix, C a ( n  x m )  matrix, and D a (n x n )  
matrix. We assume m # n. Let Eab be the matrix with entry 1 in the ath row and the 
bth column, and 0 elsewhere. The Cartan subalgebra is spanned by 

H a  = Ea, -Eo+l,a+l u = l ,  . . . ,  m - l , m + l ,  . . . ,  m + n - 1  ( 3 . 1 0 ~ )  

(3.10b) H m  = Emm + Em+l,m+, * 

The even, respectively odd, roots are given by [4]: 

& = { & , - E b ,  l S a ,  b s m ; S c - 6 , , 1 s c , d s n }  ( 3 . 1 1 ~ )  

A ,  = { * ( E ,  - a,), 1 s a < m, 1 s c s n} (3.11b) 

where E, ,  6, are linear functionals defined on the set of diagonal matrices D = 
{ d  = diag(d, l,. . . , d,+,,,+,)} as follows: 

E a ( d ) = d a a  S c ( d )  = d m + c , m + c  a = l , .  . . , m c = 1 , .  . . ,111. (3.12) 

A set of simple roots is given by 

J I = { ( Y ~ , .  . . , ( Y , + , , - I } = { E ~ - E ~ ,  . . . ~ E,, - ] -&, , , ,  E , , , -& ,  61-82,. . . , 6n-1-6fl}. (3.13) 

From now on we consider the special case g = s1(2/1). A basis is given by 

E , = ( :  : E 2 = ( :  : il F l = ( A  : :) F2=(! 8 !) 
0 0 1  0 0 0  1 0 0  0 0 0  

G I =  (o 0 0 0 J 

0 1 0  0 0 0  0 0 0  

G2=[: : :) HI=[: ; 0) H 2 = ( :  ;) 
(3.14) 

i.e. four even elements E l ,  F, , HI, H2 and four odd elements E 2 ,  F2,  GI,  G2. The 
non-vanishing (anti)commutation relations are 

[ H a ,  E b l - =  KabEb 

[Ha, G b l - = f i a b G b  [E l  E21- = GI [ E , ,  G2]- = -F2 

[E29 G21+ = F1 [Fi  5 F21- = -G2 

[F2, GI+ = El [G , ,G21+=H,+H2.  

[ H a ,  F b l -  = -KobFb [ E a ,  FblT = 8ab 

(3.15) 
[Fi, Gi1- = E2 

Here the Cartan matrix is [&,I = (-: -A) and [ f l a b ]  = (-; -:). Expand x, in this basis: 

(3.16) X, = hp Ha + e,” Ea + f p  Fa + g,” G,. 
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Equation (3.17) represents a recursive form of a hierarchy of Super-NLEE. For k = 1 
we find the trivial identities e,! = e,, and the same for the other fields. For k = 2 the 
equations are as follows (where we have put l / A l  = A ,  l / A 2  = B, l/no= C ) :  

4. Reductions 

Now we consider some special cases of the super - ram derived in 9 3 by putting some 
restrictions on the fields. Some of the reduced equations will be identical to some 
previously considered in the literature. Others will be new. 
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4.1. g = b(0, 1) 

We start with equations (3.6) and (3.7). If we put f =  2, r =  4 and 1/ho=2i  these 
equations become respectively the super-NLs equation and the super-MKdv equation 
for one complex scalar field e( t, x)  and one complex anticommuting field q( t ,  x )  [7,8]: 

e, = ie,, - 2ieeP + 4iqqe + 4iqq, ( 4 . 1 ~ )  

q, =2iq, -iqed+2ieq,+igeX (4.lb) 

e, = -e,,, + Bee,? - 124,eq - 12qeqx - 12qq,, ( 4 . 2 ~ )  

qr = -4q,,, + 6q,ed + 3qe,2 + 3qeh + 6 4 e x  + 34e,. (4.2b) 

By setting f = f o =  1, r = O  and l /ho=2i  we find that (3.7) gives the super-Kdv 
equation [7]: 

e, = -e,,, + 6 ee, - 1 2qqx, (4.3a) 

q1 = -4qX,,+6q,e+3qe,. (4.3b) 

4.2. g = s1(2/1) 

If we put e = I  $ = Cp, x = 6 and l / A l  = ia, 1/ A 2  = ib, l /Ro  = ic, where a, b, c are con- 
stants related by c = ab/ (a  + b), the six equations (3.20) reduce to the following three 
coupled equations, for two complex anticommuting fields $(x, t ) ,  x(x, t )  and one 
complex scalar field e(x, t ) :  

(4.4a) 

(4.4b) 

-ie, = ae,, - 2aeeP - cxfe + b$$e - c&y, - b$,x 

-ixr = cxxx - aedx + b$$x - be$, + a$ex. 

-i$, = b$,, + aeP$ + cxf$ - cdxX - a2,x 

(4.4c) 

These equations generalise the super-NLs equations previously considered in the 
literature, as they contain cubic non-derivative terms in the spinor fields. The equations 
discussed in [6-81 are associated with super-Lie algebras, which only have one odd 
root and therefore only contain two spinor fields or a spinor field and its complex 
conjugate. The 'maximal' non-derivative spinor interaction is therefore of the form 
$x or $4 as $" = 0 for n 3 2. The two odd roots for s1(2/1) therefore explain the 
presence of the cubic terms in (3.20) and (4.4). 

5. Conservation laws and the Hamiltonian structure 

As mentioned earlier, the functions hz turn out to be intimately related to the conserved 
quantities. One therefore expects the Hamiltonians to be certain combinations of these 
functions. We have already written down, in (3.8), the explicit expressions for the first 
few functions h,, in the case b(0, l ) .  These expressions are relatively easily derived 
because b (0 , l )  only has two (simple) roots, one even and one odd. 
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Introduce the following Poisson bracket: 

{ e ( x ) , f ( x ' ) I  = hoa(x - x ' )  { d x ) ,  r ( x ' ) )  = hoS(x - x ' )  (5 .1 )  

which vanishes for all other combinations of fields. We impose the following boundary 
condition on the fields e(itoo) =f(+m) = 0, q(*m)) = r ( i c 0 )  = 0. The integrals over 
h k ( x )  are in involution with respect to this Poisson bracket: 

+ac 

I,= I_, hohfl(x) dx { I n ,  I m l = O  (5.2) 

and each one of them leads to evolution equations. In particular we find that (3.6) 
can be written as 

et =!{I'%, el f t  = f { I 4 , f I  91 =4{14,4} r, = ${ L,, r } .  (5.3) 

hk+l(X) = Dxh2;tk(x) k e  Z+ (5.4) 

To establish the Poisson commutativity we use the relation 

which is a special case of the equation 

hn+l;,, - hk+l;tn 0 k, n E Z +  ( 5 . 5 )  

easily derived from (3.36). 
In the case g = s1(2/1) we find that for each simple root a", a = 1,2, the functions 

h: are not polynomial in ea, f", g" and x derivatives thereof. We find that the linear 

(5.6) 

(5.7a) 

(5.7 b )  

(5.7c) 

(5.7d) 
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For each simple root aa, a = 1,2, we find the relation 

h:+l:t, - hE+,?,> = 0 (5.11) 

which can be used to establish the commutativity (5.9). Each K,, can be taken as a 
Hamiltonian for some evolution equation; in particular, we find that equations (3.20) 
can be written as 

Further results can be obtained for other superloop algebras and will be published 
elsewhere. 

6. Discussion 

In this paper we have constructed supersystems of NLEE related to the super-Lie 
algebras b ( 0 , l )  and s1(2/1). Every root vector of these algebras gives rise to a field, 
where even root vectors are mapped on commuting fields and odd root vectors on 
anticommuting fields. In the case of b(0, l ) ,  which only has one even and one odd 
root, we find a system of NLEE in four fields, i.e. two scalar and two anticommuting 
fields. s1(2/1) has one even and two odd roots and therefore leads to NLEE in four 
anticommuting and two commuting scalar fields. The structure of these equations is 
considerably more complicated than the structure of the equations associated with 
b(0, l ) ,  as is their infinite set of integrals. 
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